Sparse auto-associative neural networks: theory and application to speech recognition

نویسندگان

  • Garimella S. V. S. Sivaram
  • Sriram Ganapathy
  • Hynek Hermansky
چکیده

This paper introduces the sparse auto-associative neural network (SAANN) in which the internal hidden layer output is forced to be sparse. This is achieved by adding a sparse regularization term to the original reconstruction error cost function, and updating the parameters of the network to minimize the overall cost. We show applicability of this network to phoneme recognition by extracting sparse hidden layer outputs (used as features) from a network which is trained using perceptual linear prediction (PLP) cepstral coefficients in an unsupervised manner. Experiments with the SAANN features on a state-ofthe-art TIMIT phoneme recognition system show a relative improvement in phoneme error rate of 5.1% over the baseline PLP features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

High Performance Associative Neural Networks: Overview and Library

Associative neural networks are regaining the popularity due to their recent successful application to the problem of real-time memorization and recognition in video. This paper presents a comparative overview of several most popular models of these networks, such as those learnt by the Projective Learning rules and having Sparse architecture, and introduces an Open Source Associative Neural Ne...

متن کامل

Support for an auto-associative model of spoken cued recall: evidence from fMRI.

Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An au...

متن کامل

Factor analysis of mixture of auto-associative neural networks for speaker verification

This paper introduces the theory of factor analysis of the mixture of Auto-Associative Neural Networks (AANNs) with application in speaker verification. First, we formulate the problem of learning a low-dimensional subspace in part of the mixture of AANNs parameter space, and subsequently derive the update equations by minimizing loss function of the mixture. Second, we apply this technique to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010